Oil spill identification - Petroleum and petroleum related products - Part 2: Analytical method and interpretation of results based on GC-FID and GC-low resolution-MS analyses
This document specifies a method to identify and compare the compositional characteristics of oil samples. Specifically, it describes the detailed analytical and data processing methods for identifying the characteristics of spill samples and establishing their correlation to suspected source oils. Even when samples or data from suspected sources are not available for comparison, establishing the specific nature (e.g. refined petroleum, crude oil, waste oil, etc.) of the spilled oil still helps to constrain the possible source(s).
This methodology is restricted to petroleum related products containing a significant proportion of hydrocarbon-components with a boiling point above 150 °C. Examples are: crude oils, higher boiling condensates, diesel oils, residual bunker or heavy fuel oils, lubricants, and mixtures of bilge and sludge samples, as well as distillate fuels and blends. While the specific analytical methods are perhaps not appropriate for lower boiling oils (e.g. kerosene, jet fuel, or gasoline), the general concepts described in this methodology, i.e. statistical comparison of weathering-resistant diagnostic ratios, are applicable in spills involving these kinds of oils.
Paraffin based products (e.g. waxes, etc.) are outside the scope of this method because too many compounds are removed during the production process [37]. However, the method can be used to identify the type of product involved
ΚΩΔΙΚΟΣ ΠΡΟΪΟΝΤΟΣ:
CYS EN 15522-2:2023
This document specifies a method to identify and compare the compositional characteristics of oil samples. Specifically, it describes the detailed analytical and data processing methods for identifying the characteristics of spill samples and establishing their correlation to suspected source oils. Even when samples or data from suspected sources are not available for comparison, establishing the specific nature (e.g. refined petroleum, crude oil, waste oil, etc.) of the spilled oil still helps to constrain the possible source(s).
This methodology is restricted to petroleum related products containing a significant proportion of hydrocarbon-components with a boiling point above 150 °C. Examples are: crude oils, higher boiling condensates, diesel oils, residual bunker or heavy fuel oils, lubricants, and mixtures of bilge and sludge samples, as well as distillate fuels and blends. While the specific analytical methods are perhaps not appropriate for lower boiling oils (e.g. kerosene, jet fuel, or gasoline), the general concepts described in this methodology, i.e. statistical comparison of weathering-resistant diagnostic ratios, are applicable in spills involving these kinds of oils.
Paraffin based products (e.g. waxes, etc.) are outside the scope of this method because too many compounds are removed during the production process [37]. However, the method can be used to identify the type of product involved